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Abstract Centrality of an edge of a graph is proposed to be viewed as a degree of
global sensitivity of a graph distance function (i.e., a graph metric) on the weight of
the considered edge. For different choices of distance function, contact is made with
several previous ideas of centrality, whence their different characteristics are clarified,
and strengths or short-comings are indicated, via selected examples. The centrality
based on “resistance distance” exhibits several nice features, and might be termed
“amongness” centrality.

Keywords Centrality · Betweenness · Shortest-path centrality ·
Resistance-distance centrality · Graph metrics · Neighborliness centrality

1 Introduction

One mathematical idea concerning centrality in a graph was presented 140 years ago,
at least for the case of trees, by Jordan [1]. Also centrality has (starting before 1970)
been considered for use in transportation-network theory [2–4] in communication-
network theory [5–10] in psychology [11–14] in sociology [15–26] in geography
[27] and in game theory [28]. Now an even more widespread interest is develop-
ing, for applications: in electrical circuits [29,30] in molecular bonding patterns
[31–33] in biochemical reaction networks [34,35] in ecological or population-genetics
migration patterns [36] and perhaps in food-webs [37]. The idea of centrality has be-
come much investigated in computer science [7,9,10,38–42] and some recent articles
[43–46] have been directed to a general understanding of centrality without focus to
any particular application. There have been several centrality definitions advocated
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[1,2,6,13,21,29,31,38,42,43] different efficient means have been sought [8,42,43,
47,48] for the computation of different centrality measures, further mathematical re-
sults have been enunciated [43,45,46,49,50] and comparisons of different definitions
have been made [51–55]. Some centrality measures were developed [11,17] for di-
rected graphs, possibly even highly directed, as occur in organizational (e.g., business
or military) structures, but more often focus has been on the undirected case.

In 1979 Freeman [23] gave an informative critical discussion of centrality. He
reviewed earlier work (primarily in sociology), and identified three overall views:

(1) the centrality of a graph part (site, or perhaps edge) depends on the connectedness
through immediate edge connections to other sites;

(2) the centrality of a site depends on the frequency with which a graph part falls on
relevant (perhaps shortest) paths between all pairs of other sites; and

(3) the centrality of a graph part depends on the degree to which it is close to the rest
of the graph (measured by an average distance to the sites of the graph).

Freeman discussed a few particular centrality measures.
Generally one desires not just an identification of the most central edge (or vertex)

but also a measure of the degree of centrality for each edge (or vertex). And it should
apply to weighted graphs, as so often arise in practice. It might even be wished to
compare centralities in different graphs.

Here for the circumstance of undirected graphs, “centrality” is viewed to depend
in a global manner on a graph distance function ρ, and more particularly on global
changes in ρ which occur upon modification of a considered graph part (say an edge).
The “centrality” of an edge of a graph G is naturally measured by the sensitivity of such
a graph metric ρ to changes in the weight of the edge. That is, centrality is naturally
measured in terms of sensitivity to changes in the “communicability” or “strength”
of the edge, as indicated by its influence on ρ. Indeed “betweenness” centrality has
already been often framed in terms of the shortest-path distance, but as there are
[56–59] different fundamental distance functions definable on a graph, this naturally
indicates the possibility of different centrality definitions. Here indication is made of
some characteristics, advantages, and short-comings of different consequent centrality
definitions. Interrelations to earlier defined centrality measures are frequently found.
Ultimately focus is directed to a centrality measure based on the so-called “resistance
distance”.

2 Formal framework and general definition

The discussion here is formally phrased in terms of a weighted graph G = (V, E,A),
where V is the vertex set of G,A is a matrix of weights with real finite elements
Axy = Ayx ≥ 0, x, y ∈ V , and E ≡ {{x, y} : Axy > 0} is the edge set of G. Tech-
nically with A given, E is redundant, but is retained as its use is standard, especially
for unweighted G. The matrix A might be called a weighted adjacency matrix or con-
ductance matrix, or an admittance matrix. Generally it is assumed that G is finite and
connected. Higher weights are interpreted to mean that there is better or closer contact
or communication between the so interconnected sites. That is, this weight has an
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inversive relation to distances between (neighbor) sites. A general distance function,
or metric, ρ : V × V → R satisfies

ρ(x, x) = 0, x ∈ V
ρ(x, y) = ρ(y, x) > 0, x �= y ∈ V
ρ(x, y)+ ρ(y, z) ≥ ρ(x, z), x, y, z ∈ V

It further is recognized that plausibly such a ρ should be sensitive to the edge weights
(or more directly to the inverses, of the non-zero weights), and should vary with these
weights such that distances are nonincreasing with increasing weight. The [3] respec-
tive conditions above mean that each singleton, doublet, or triplet of points can be
faithfully (or isometrically) embedded in 0-, 1-, or 2-dimensional Euclidean space.
If the third condition is not met then ρ “degenerates” to a pseudometric. A distance
function varying with all non-zero weights is termed A-sensitive. A general way to
take an overall measure of such a metric is by way of the Wiener-Bavelas ρ-sum

Wρ(G) ≡ 1

2

∈V∑

x,y

ρ(x, y)

in rememberance of Harry Wiener [60,61] and of Alex Bavelas [15,16], each of whom
early on used such a sum with ρ the “shortest-path” metric.

Now the proposed ρ-centrality measure for an edge {u, v} ∈ E is

cρ(u, v) ≡ A−1
uv

n

∂Wρ(G)

∂A−1
uv

where n ≡ |V | divides out some effects of the size of a graph. From a conventional
graph-theoretic perspective for unweighted graphs (i.e., those with all Axy ∈ {0, 1}), it
may be noted that this centrality is an “intrinsic” measure for ordinary (unit-weighted)
G, when the A−1

uv -derivative is taken for a given {u, v} ∈ E and evaluated at Auv =
1—at least this result is “intrinsic” so long as ρ itself is “intrinsic”. For molecu-
lar graphs, one could naturally be interested in the Euclidean metric for different
embeddings of the molecule in 3-dimensional space—though this is not “intrinsic”
to the (unembedded) graph. Still in many (perhaps most) applications, weights will
be desired and depend on “extrinsic” features of what is being modelled. But even
if weights reflect extrinsic features, the definition is still “intrinsic” relative to the
weighted graph. Regardless of such considerations, the centrality of a vertex u ∈ V
is naturally expressed in terms of the sensitivities of the edges to which it is incident,
thusly

cρ(u) ≡
{u,v}∈E∑

v

cρ(u, v)
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Further a compactness invariant for the (weighted) graph might also be defined as

cρ(G) ≡
∈E∑

{u,v}
cρ(u, v)

Presumably the edge centrality, vertex centrality, and compactness functions can all be
distinguished by their arguments—thereby avoiding some proliferation of symbols.

With these formal definitions in hand, the next matter at hand is to explore these
ideas in the context of different choices for the distance function ρ, thereby looking
at different possible centrality measures.

3 Neighborliness or degree centrality

A first “degenerate” case is based on a very simple choice for ρ, as

ρneighbor (x, y) ≡
{

0, x = y
1/Axy, x �= y

}
, x, y ∈ V

This is “degenerate” in that when x �= y & {x, y} /∈ E , the result ρneighbor (x, y) is
infinite, +∞. Then this function does not generally satisfy the third (triangle-inequal-
ity) for a metric, and is only a pseudometric. Moreover, the Wiener ρneighbor -sum is
usually +∞. But if it is assumed that the formally infinite part of this sum is constant,
one still obtains a formula for the related centrality of an edge {u, v} ∈ E , as

cneighbor (u, v) = A−1
uv /n

Indeed were all the non-edges {x, y} to be given a small weight ε, the value of
ρneighbor (x, y) becomes = 1/ε, whence if the limit ε → 0 is taken after the derivative
∂/∂A−1

uv for {u, v} ∈ E , the centrality is just 1/Auvn, while for {x, y} /∈ E the result is
0. The (now likely undesirable) factor of 1/n occurs because of the extreme “degen-
eracy” of this pseudometric, with only a single value of ρneighbor (x, y) depending on
Auv . The associated vertex centrality then is

cneighbor (u) = n−1
{u,v}∈E∑

v

A−1
uv

such as has already been taken [11,12,23] as a centrality measure, and sometimes
(without the n−1 factor) referred to as “degree” centrality–and sometimes this is re-
ferred to as the “eccentricity” of the vertex. These centralities of course do not reflect
(directly) on how the non-neighbor pairs are influenced by the weight for a given edge
(or site). As an illustration of this point consider the (unweighted) graph:
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*

* *

*

*

*

*
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*

*

Here one sees a clear intuitive choice for a most “central” edge (in the center of
the graph), though this is the least “central” according to the current neighborliness
centrality measure (with or without the 1/n factor).

4 Shortest-path centrality

The next centrality index is based on the most common distance function, which for
an unweighted graph is simply the length of a shortest path between the 2 considered
vertices. In fact, in Buckley and Harary’s seminal Distance in Graphs [62] this is the
only metric considered. For the weighted case it is given as

ρsp(x, y) ≡ min
π : x ↔ y

∈E(π)∑

{u,v}
A−1

uv

where the minimum is taken over all paths π between x & y. The Wiener sp-sum is
defined straightforwardly for the weighted case. But to illustrate a particular behavior
of the centrality measure, we temporarily specialize to the unweighted case, whence
it is noted that its derivative is in general ill-defined, as it can be different for a left
derivative or a right derivative, when there are alternative x, y − geodesics which
are minimum weight paths between x & y. That is, this devolves to two possibilities,
csp+ & csp− as the derivative with respect to A−1

uv is evaluated as A−1
uv approaches 1

from above (+) or below (−). That is,

csp±(u, v) ≡ A−1
uv

n

∂Wsp(G)

∂A−1
uv

]

A−1
uv →1±

To further develop this, it is useful to introduce the set Gxy of all x, y-geodesics,
and let δ(uv∀Gxy) = 1 if {u, v} ∈ E is in all geodesics in Gxy , while otherwise
δ(uv∀Gxy) = 0. That is, this δ-function characterizes just which geodesics contribute
to csp−. Yet further let δ(uv∃Gxy) = 1 if {u, v} ∈ E is in some geodesic in Gxy ,
and otherwise δ(uv∃Gxy) = 0. Thence δ(uv∃Gxy) characterizes the geodesics which
contribute to csp+. As a consequence:

Proposition 1 For G an unweighted graph with csp±, δ(uv∀Gxy),& δ(uv∃Gxy)

defined as above for an edge {u, v} ∈ E,

csp−(u, v) = 1

2n

∈V∑

x,y

δ(uv∀Gxy) & csp+(u, v) = 1

2n

∈V∑

x,y

δ(uv∃Gxy)
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In as much as these two centrality indices are obtained from looking at deviations
of weights in one direction or another (from 1), one also might define an average
shortest-path centrality, as

csp0(u, v) ≡ {csp+(u, v)+ csp−(u, v)}/2

All this may be compared to the betweenness centrality index of Freeman [15,23](and
Anthonoisse, as quoted by Freeman [23]). This entails the fraction gxy(u, v) of geo-
desics in Gxy which contain {u, v}, whence their betweenness centrality is given by

cbetweenness(u, v) = 1

2n

∈V∑

x,y

gxy(u, v)

The intimacy of relation of the various centrality indices of this section is indicated in
a table indicating the values of the summands in the different cases:

xy-summand for

gxy(u, v) ≡ p sp+ sp0 sp

0 0 0 0
0< p <1 1 1/2 0
1 1 1 1

Though clearly closely related, Freeman’s betweenness centrality is evidently
more discriminating, and one evidently also has:

Proposition 2 For G an unweighted graph, the shortest-path centrality indices for
any edge {u, v} ∈ E satisfy

csp−(u, v) ≤ csp0(u, v) ≤ csp+(u, v)& csp−(u, v) ≤ cbetweenness(u, v) ≤ csp+(u, v)

Further it should be noted that the shortest-path metric in the weighted case is not
always A-sensitive. A case in point is provided by the weighted graph:

2 2

* *

*

8/9

where the graph is rather arbitrary within each of the “balloons”. Recall that the geode-
sics are given in terms of the inverses of these indicated weights, whence one sees that
no geodesic for any pair of vertices x, y ∈ V contain the 8/9-weighted edge. Thence
any of the shortest-path centralities for this 8/9-weighted edge is 0–though this edge
carries almost as much traffic as the two 2-weighted edges. For many choices of the
rest of the graph in the two “balloon” parts, the above 2-weighted edges turn out to

123



J Math Chem (2010) 47:1209–1223 1215

be the central edges, though in using the shortest-path (or betweenness) centralities,
with the 8/9-weighted edge gradually increased in weight (by up to a little over 11%),
it would abruptly change to become of maximum centrality.

5 Resistive centrality

The resistive centrality is based on a more recently recognized metric [56], which may
be defined in several different ways. One such way is to view G = (V, E,A) as an
electrical network with resistors of values A−1

uv on each edge, and take the resistance
distance ρ�(x, y) to be the effective resistance between nodes x ∈ V &y ∈ V (as when
the two poles of a battery are connected to x & y). Alternatively ρ� can be given in a
formula in terms of the Laplacian matrix L ≡ D − A, where D is the diagonal matrix
whose x th diagonal element is Dxx ≡ ∑∈V

y Axy . This matrix L has a 0-eigenvalue for
the (eigen-) vector �e of all 1s, and this eigenvector is unique (up to scalar multiples)
so long as G is connected (as we have assumed). [This and some related things are
reviewed in [56], though L�e = 0 has long been known—with many results appearing
in various standard electrical-circuits texts, back to Maxwell [63], and some results
go back to Kirchoff [64].] In the connected case there then is a matrix � which is the
inverse to L on the subspace orthogonal to �e and otherwise is 0, whence the product
of �& L is the idempotent projector O(�e) onto this subspace orthogonal to �e. Now in
terms of this matrix �, Kirchoff’s laws lead to the resistance distance being given as

ρ�(x, y) = �xx − �xy − �yx + �yy, x, y ∈ V

A further physical interpretation [57] of ρ� again starts with the Laplacian matrix L,
noting that its action on a vector is essentially just a discretized form of the continuum
Laplacian ∇2 of mathematical physics. As a consequence the eigenvectors �ψε of L
should be viewable as discretized versions of standing waves, with eigenvalues ε cor-
responding to wave energies, which are generally expected to be lower for the longer
wavelength such waves. Then granted that these eigenvectors �ψε (with � �ψε = ε �ψε)
are normalized, as

�ψ†
ε · �ψε =

∈V∑

u

|ψεu |2 = 1

the resistance distance may be rewritten as

ρ�(x, y) =
>0∑

ε

(ψεx − ψεy)
2/ε, x, y ∈ V

and interpreted as a wave-amplitude “correlation function” with more major contri-
butions from the higher weighted longer wave-length (lower energy) standing waves.
There is also a combinatorial interpretation [65], as well as a probablistic (random-
walk-based) interpretation [66]. All of these interpretations point [57] to a fundamen-
tality for this metric.
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Granted this resistance-distance metric, the associated centrality index may be
addressed. Evidently

c�(u, v) = A−1
uv

2n

∂

∂A−1
uv

∈V∑

x,y

(�xx − �xy − �yx + �yy)

But since �e is a 0-eigenvector to�,
∑

y �xy=0= ∑
x �yx , and also

∑
x,y �xx=n · tr�,

where tr denotes the trace operation. Thence the centrality expression simplifies to

c�(u, v) = A−1
uv

∂

∂A−1
uv

tr{�}

But further noting that � = O(�e)� = �L�, one has

∂�

∂ξ
= ∂

∂ξ
{�L�} = ∂�

∂ξ
· L� + � · ∂L

∂ξ
· � + �L · ∂�

∂ξ
= 2 · ∂�

∂ξ
+ � · ∂L

∂ξ
· �

with ξ being an arbitrary variable (such as A−1
uv ). Thence ∂�

∂ξ
= −� · ∂L

∂ξ
· �, and for

ξ ≡ A−1
uv , one has ∂L

∂A−1
uv

= −A2
uv · ∂L

∂Auv
= −A2

uv · (euu − euv − evu + evv) where exy

is the matrix of all 0s except in the (x, y)th position where there is a 1. Then

c�(u, v) = −A−1
uv · tr

{
� · ∂L

∂A−1
uv

· �
}

= Auv · tr{� · (euu − euv − evu + evv) · �}

Now tr{�eyz�} = ∑
x �xy�zx = (�2)zy , so that one obtains:

Proposition 3 Let G = (V, E, A) be a weighted graph, with ρ� the resistance dis-
tance, and associated edge centrality as in the introduction. Then for u, v ∈ V ,

c�(u, v)=Auv · {(�2)uu − (�2)uv − (�2)vu + (�2)vv} = Auv ·
>0∑

ε

(ψεu − ψεv)
2/ε2

This result for c� may be compared with the two formulas for ρ� as given in the
preceding paragraph. Evidently c� is essentially as easy to compute as ρ�, for which
the requisite matrix inversion is generally understood to be an O(n3) process—see
e.g. [67]. If one is interested only in the centrality of one or a few edges, then the pro-
cess of computing �(�eu − �ev) & �2(�eu − �ev) (as needed for the associated ρ� & c�
values—�ex being the vector of 0s except for a single 1 in the x th position) is just an
O(n2) process. And if the graph is suitably sparse, say with a degree limited to 4 (as
for organic molecular graphs), then these process for such a few centralities can be
reduced to O(n)—by treating L as an array of non-zero matrix-element values and
their positions in L.

Further from these expressions it is seen that the resistance distance ρ� is A-sen-
sitive, whence also is c�. That is, c� gives non-zero centralities for the cases in the
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figures of the preceding sections, where previous centrality measures encountered
difficulties.

6 Inter-relations to resistive centrality

There is an earlier definition by Newman [42] for centrality based on random walks,
though particularly the formulas are based on electrical network theory, which is in fact
intimately related [66] to random walks on networks. Newman’s definition proposes
viewing the graph as corresponding to an electric network with resistors on each edge,
considering the connection of a power source to each different pair of vertices, and tak-
ing the average magnitude of current flowing through an edge as its centrality. The first
two steps are just as in one of the interpretations in the preceding section. The current
magnitude is used, rather than just the current, as the current can be positive or nega-
tive, with different contributions corresponding to different battery attachments, and
so cancelling. But beyond Newman’s considerations [42], voltage difference across an
edge might also be relevant for centrality–as an edge far on the periphery will typically
develop little potential across it for most connections of the battery, while one centrally
located should typically develop a more substantial potential difference. Of course,
the potential difference and the current through an edge are proportional, via Ohm’s
law. But it might be imagined that what is more fundamental is the net activity in
the edge, as measured by the electric power dissipated in the considered edge–power
being equal to the product of the potential difference and current. In another language,
not only the net traffic flow, but also its speed matters–the speed depending on the
pressure (or potential) difference between the two ends of a traffic channel. That is,
of two channels carrying the same amount of traffic, one might be narrower carry-
ing traffic at higher speeds and thereby cause more problems if interrupted. Granted
potentials ϕxy

w at a vertex w along with currents I xy
u→v through edge {u, v} ∈ E when

the battery is connected to x ∈ V & y ∈ V , the power dissipated in the edge {u, v} is

I xy
u→v · (ϕxy

u − ϕxy
v ) ≡ Pxy

uv

Newman’s earlier proposed [42] current-based centrality then is n−1 ∑∈V
x,y |I xy

u→v|.
But if cognizance is taken of the preceding remarks, a quite natural power centrality

might be defined as

cpower (u, v) ≡ 1

2n

∈V∑

x,y

Pxy
uv

Notably there is no problem about taking absolute values (of currents or voltages) as
the signs are correlated, so that the resultant power (dissipated) is positive. Then

cpower (u, v) = 1

2n

∈V∑

x,y

I xy
u→v · (ϕxy

u − ϕxy
v ) = 1

2n

∈V∑

x,y

(ϕ
xy
u − ϕxy

v )
2 · Auv
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But as this potential difference is [56] given by ϕxy
u −ϕxy

v = �ux −�uy −�vx +�vy ,
one may substitute this, then use the L�e = 0 relation along with the symmetry of �,
to obtain

cpower (u, v) = Auv

n
·

∈V∑

x,y

(�ux − �uy − �vx + �vy)
2

= Auv

n
·

∈V∑

x,y

{(�ux − �vx )
2 + (�vy − �uy)

2}

= Auv · {(�2)uu − (�2)uv − (�2)vu + (�2)vv}

Thus:

Proposition 4 Let G be a weighted graph with resistance distance ρ�, associated
�-centrality c�, and power centrality cpower . Then cpower = c�.

That is, cpower reproduces the result of the preceding section—now providing a
perhaps not unsurprising alternative interpretation of this (resistive) centrality mea-
sure: cpower = c� is the power dissipated in the considered edge averaged over all
patterns of connection of the battery.

A further comment may be made in view of Borgatti & Everett’s note [55] that
“all of the [centrality] measures evaluate a node’s involvement in the walk structure
of a network”. Here the “walk structure” can refer to paths, geodesics, and weighted
walks. In reviewing the field, Borgatti & Everett evidently did not entertain the idea
of random walks, such as may be perceived to be involved in the resistive centrality
introduced here. Now since ϕxy

u − ϕ
xy
v = I xy

uv A−1
uv , one may rewrite the expression

half a dozen lines before Proposition 4 as

cpower (u, v) = 1

n

∈V∑

x,y

(I xy
u→v)

2 · A−1
uv

But as the current I xy
u→v turns out to equal [66] the expected net number #x→y

uv of times
that a random walker, starting at x and waking till reaching y will move along the edge
from u to v, we then have:

Proposition 5 Let G be a weighted graph with resistance distance ρ�. Then

c�(u, v) = A−1
uv

n

∈V∑

x,y

(#x→y
uv )2

That is, a “walk structure” interpretation, of the general type of Borgatti & Evertt has
been achieved.

123



J Math Chem (2010) 47:1209–1223 1219

7 Disconnectional ideas, etc

A few words might be said about graphs G which have cut edges (i.e., an edge which
if deleted from G leaves a disconnected result). A cut edge {u, v} appears as:

* *A Bu
v

In this case, either all or none of the geodesics between a pair of points pass through
the cut edge. If x ∈ V is in the A-part of G, while y is in the B-part, then all geodesics
pass through {u, v}; whereas, for x, y ∈ V with either both in A or both in B, none of
the geodesics pass through {u, v}. As a consequence, all the shortest-path centralities
for {u, v} are the same, and moreover (following Wiener [60,61]) the number of con-
tributing geodesics is just the product of the numbers of sites in the A- & B-parts. If
nu(v) denotes the number of sites in G closer to u than v, then this is just the number
of sites in the A-part, and the number of sites in the B-part is similarly just nv(u),
whence csp(u, v) = Auv · nu(v)nv(u)/n. Also the resistance distance manifests similar
characteristics. Again if x ∈ V & y ∈ V are either both in A or both in B, then
ρ�(x, y) is independent of Auv . And if x & y are in different parts, ρ�(x, y) turns
out to be a sum ρ�(x, u) + A−1

uv + ρ�(v, y), with ρ�(x, u)& ρ�(v, y) independent
of Auv . That is, though the resistance distance between x ∈ A & y ∈ B are generally
different than the corresponding shortest-path distance, the rates of change of each of
these distances with respect to A−1

uv are the same. Thus we have:

Proposition 6 Let G be a weighted graph with cut edge {u, v} ∈ E. Then the short-
est-path and resistive centralities for {u, v} are the same = A−1

uv · nu(v)nv(u)/n.

This last proposition of course applies for every edge of a tree. It does not however,
generally give the same most central edge as Jordan’s [1] original definition, e.g., as
witnessed with the tree:

* * * * *

**

*

* *

Here (when the tree is unweighted) the “doubled” edge has the maximum �-cen-
trality (of 6 × 4 = 24), whereas Jordan’s [1] central edge is obtained by successive
prunings of leaves (i.e., deletions of degree-1 vertices), to leave (after two stages of
such prunings) the edge just to the right of the “doubled” one.

Jordan [1] defined this center just for trees. But one might seek to extend the idea to
general graphs, say by first undergoing successive deletions of degree-1 vertices, till
this can be done no longer, then deleting degree-2 vertices, iteratively (while deleting
any degree-1 vertices which might arise along the way) till nothing more is possible,
then continuing with degree-3 vertices, etc. For a single cycle, this extended scheme
deletes all the vertices at once, leaving the empty graph, and thereby indicating that
all edges (or vertices) have the same degree of centrality. But on the other hand, such
an extension does some anomalous things, as for the graph:
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The indicated extension of Jordan’s deconstruction yields the 6 edges (& sites) of the
two triangles comprised of degree-3 sites as the most central, although these are on
what is plausibly the “periphery” of the graph. The neighborliness centrality gives the
two horizontal edges connected between degree-3 & -4 sites to be of maximum cen-
trality. On the other hand, via the shortest-path or resistive choices, the “center” edge
here has the highest centrality. Generally both the “extension” of Jordan’s idea as well
as the neighborliness centralities depend overly strongly on local features—without
accounting for the global graph structure.

Yet another sort of centrality index which has been suggested [18] and much used
[7,9,20,25] is that of “eigenvector centrality”, which for a vertex u is essentially just
the uth component of the maximum-eigenvalue eigenvector to the adjacency matrix
A. This has many desirable features—in not being over-sensitive solely to the neigh-
bors or changing abruptly as geodesics change. This behavior is similar to the resistive
centrality, though formal connections do not seem apparent.

As to the general difficulty and multiplicity of centrality definitions, this might but
signal that in fact centrality is a partially ordered property. The different centrality
measures might just be different order-consistent (ordered) scalar representations of
the underlying partial order.

8 Conclusion

A general metric-based definition of edge centrality has been presented, as the sensi-
tivity of a distance-sum to changes in the weight assigned to the considered edge. This
idea is noted to specialize under different choices of graph metric to give different
centrality notions, which have different characteristics, advantages, & short-comings.
Those centralities based on the neighborliness pseudometric or on the shortest-path
metric relate most closely to earlier studied & advocated centrality measures, while the
approach taken here appears in a unified way looking at the effect of a local structure
on a metric as a whole. The shortest-path metric (and even more-so the pseudomet-
ric) have simplistic “all-or-none” features, with results sometimes changing abruptly
upon infinitesimal changes in weightings, and some aspects of this all-or-nothing fea-
ture carries over to the associated centralities, evidently as recognized by Borgatti
& Everett [55] when they comment “the reliance on geodesic paths alone may be
undesirable”. The new �-centrality measure, based on the resistance distance, seems
especially attractive, in terms of: motivation, global sensitivity, and algorithmic felic-
ity. This resistive centrality measure looks at more averaged features, e.g., as detected
by waves, (weighted) random walks, or current flows in the network—with the cur-
rents being interpretable in an electrical or hydrological fluid vein. Indeed, the flows &
random walks should be interpretable in terms of the movement of goods (in a trans-
portation network), or of information transmission (in a communication network), or
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of migration of members of a population (in an eco-network), or of fluxes of biomol-
ecules (in a biomolecular reaction network). Often it is said [25,39,40,42,43,49,50]
that the shortest-path centrality measures “betweenness”, and so in some sense does the
�- centrality, though with a more global detection of the whole network and its man-
ner of interconnection. One might better say that the resistive centrality measures
“amongness”, and alternatively call it an amongness centrality.

More generally it is proposed that various interpretational concepts beyond the
centrality explored here can be profitably developed in terms of the different metrics
available. A nontrivial intrinsic geometry of graphs might [57,68–70] be possible,
with diverse applications.

Acknowledgments is made of support (via grant BD-0894) from the Welch Foundation of Houston,
Texas.
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